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CONTRIBUTIONS TO CONSUMER THEORY COHERENCE AND
PARTIAL COHERENCE

C. F. Manara, University of Milano

Abstract

The behavioural theory of consumer is revised using the mathematical tools
provides by the theory of external differential forms. After a brief outlook of the
Pareto’s classical theory a generalisation, using tools normally employed in
mathematics but nat in economics, is presented. Definition of partial coherence is
then introduced to generalise the concept of coherence. Finally, some suggestions
for applying the proposed procedures ro other tapics of economic theory are

introduced.



1. INTRODUCTION

The theory that does its best to describe and explain the behaviour of
economic agents called "consumers" is essentially classical: by way of an
example, suffice it to recall how Vilfredo Pareto applied to the consumer
rroblem the well-known procedures that Lagrange had worked out in his
inquiry into the conditioned maximums or minimums of the functions of
several variables.

Our aim in this paper is to return to the subject using the mathematical
tools provided by the theory of external differential forms.

To this end we will first take a quick look at the classical theory, and
then present the generalizations obtained by using tools that are classical
in mathematics but totally different to those normally employed in
economic theory. This application will allow us to introduce the concept
of partial coherence with which we hope to be able to generalize the
concept of coherence. In fact this latter concept could be used to describe
the behaviour of the consumer in the cases embraced by the classical
theory (which we shall call Paretian) but does not lend itself to
generalization within the sphere of this theory. However, we believe that
bv using mathematical tools that are more powerful than those used in
Paretian theory it should be possible to widen the concept of coherence,
thereby furthering our analysis of consumers behaviour by means of
mathematical tools.

We should also like to observe that in our view the procedures we are
introducing could also be usefully adopted in other chapters of economic
theory, thus providing a wider and deeper understanding of the problems
addressed.

2. THE CLASSICAL THEORY

In this paper we will make methodical use of geometrical language
because it 1s convenient and stimulating for the purpo ses of exposition.

71



This convention is clearly not harmful to generality, which means that it 1s
highly unlikely to create interpretative difficulties with tegard to the
problems of economic theory that we shall be addressing here.

Let X stand for a real Euclidean space with n dimensions (with n > 3});
the hypothesis that the space is Euclidean will fa cilitate the expression of
certain equations whose meanings will remain, as we have said, exclusively
economic.

Let us adopt the following conventions:

X=[X1,X2, ..., Xp |- (2.1)

to indicate that the coordinates of x are the {real} numbers x1,x2, ..., Xn-

We will use the symbol X' to indicate the subser of the points of X
whose coordinates are all positive; thus we can sup pose that:

X ={x eXx>0,1<i<n}. (2.2)

If A stands for an open set, simply connected and limited, contained
within X, then:

AcX. (2.3)

The coordinates xj (1< i <n) stand for the quantities of goods that a
given consumer can purchase.

The classical or Paretian theory assumes the existence of an index
function of utility (or ophelimity, to use Pareto's terminology); let u stand
for this function, and let us suppose that it has real values and is defined
and continuous in the open set A. We will thus obtain:

w A -IR ;x| — ux). (2.4)

It is clearly reasonable to suppose that the function u(x) is such that it
could establish a correspondence between the set A and the real straight
line IR, such that the total arrangement within IR makes it possible to set
up a total arrangement within the open set A as well. Thus, given two
points x, y of A, it can be said that the consumer prefers the goods



possession situation indicated by the coordinates of x to that indicated by
the coordinates of y if and only if :

u({x) >u(y). (2.5)
"Indifference variety" is the name given to a set of points of A in which
u(x) = constant. (2.6)

Without pausing to discuss the meaning of the numerical value of the
function u at a point x of A, suffice it to recall that when there is a
function of ophelimity that performs the functions attributed here to u,
then any other function:

Flu(x)], (2.7)

where F is a continuous, monotonous in the strict sense and growing
function, can be used as the utility index (ophelimity) function.

The correspondence established by the function u between the open set A
and the real straight line IR thus transforms the relation of preference
between the two situations indicated by the two points x and y in the
comparison of real values taken from the function u in the same points;
and the existence of a total arrangement on the real straight Iine allows us
to conclude that the relation of preference thus established possesses the
tollowing properties:

a) two situations, corresponding to two points x and y of A, can always
be compared with each other. In other words, the consumer (who
rranslates his preferences with the values of the function u) is always able
to determine whether or not the situation indicated by the coordinates of
point x compared with that of the coordinates of y is indifferent for him,
or whether he prefers one situation to the other;

b) if a situation corresponding to the coordinates of x is preferred to the
one corresponding to the coordinates of y, and if this in its turn is
preferred to the one that corresponds to the coordinates of a point z, then
the situation corresponding to the coordinates of x is preferred to the one
corresponding to z. In mathematical terms it can be said that in this case



the preference relationship thus established by the utility function pos-
sesses the transitive property.

We agree that the consumer who establishes his preferences in the
manner thus described is "globally coherent” in the open set A.

3. THE UTILITY FUNCTION

In the mathematical treatment it is generally supposed that the utility
function u possesses certain properties by means of which certain
problems and their solutions can be formulated using the tools of
mathematical analysis. The properties that we assume to be valid for the
function u are the following:

a) in the open set A, u possesses derivatives of the first and second
order, and these latter are continuous throughout the open set A. In the
language of mathematical analysis, this would be expressed by saying that
in the open set A the function u is of class 2 derivability at least.

For the sake of brevity, we shall be adopt the following notations for
the primary and secondary partial derivatives of function u:

ou
= 2 3.1
u ox. (3.1)
and also:
’u
9w 32
ik ox,9x, 3:2)

The classical theorems of mathematical analysis allow us to conclude
that the hypotheses assumed valid for the function u can guarantee that
for the secondary partial derivates of u the following equations are valid:

Ujk= Ui (11, k n). (3.3)
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b) In the open set A the hypersurfaces of indifference, expressed by the
equation:

u = cost. (3.4)

are convex in the strict sense. Therefore, considering two points x, y of A,
and considering two real numbers a and b that satisfy the following
conditions:

a>0,b>0,a+b=1, (3.5)
if we assume:

z=ax+by, (3.6)
then we will always obtain:

u(z)> u(x) , u(z) >ufy). (3.7)

4. THE LAGRANGE-PARETO EQUATIONS

The hypotheses stated in the previous paragraph for the function u
clearly allow us to use the language of mathematical analysis to translate
the consumer’s problem; indeed, to solve this problem using the tools
worked out by Lagrange for research into the extremal conditioned values
of the functions of several variables.

To this end we assume the existence of a vector p that we shall call the
price vector, whose components are the prices of the goods available on
rhe market for purchase on the part of the consumer:

p=1p1,P2 -y Pn |- (4.1)

Let the real, non negative number R stand for the overall expenditure of
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the consumer, that is the quantity of money he devotes to the purchase of
the available goods. We will thus obtain the basic equation:

R= Ipx, , (4.2)

that expresses the overall expenditure that the consumer devotes to the
purchase of goods.

From this equation, often called the "budget equation"”, we can obtain
the following one:

JR
—=x.
ap, '

to which we shall be referring later.

Let us now assume that the consumer's behaviour tends to seek the
point x that corresponds to the maximum value of u when the sum R is
fixed, or to minimize the sum R when the value of the function u is fixed.
As we shall be showing, this proposition expresses the basic hypothesis of
the consumer’s behaviour, provided that there is a utility function.

If the above-mentioned hypothesis is translated by means of
mathematical analysis, we obtain what we shall call the Lagrange system
of equations:

= hp

1

u,
[R _ ZPiX,- (4.4)

where h is a real number that is usually known as the “"Lagrange
multiplicator”. By eliminating h from the equation of the first line at (4.4)
we obtain the following system of equations:

piuk -pkui=0 (1<i,k<n) 4.5)

These amount to n{n - 1)/2 in number, although obviously only (n - 1)
of them are linearly independent.
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With the proposed hypotheses, the system based on the (4.5) equations
and the second {4.4) one allows us to consider the p; as functions of xk or
these latter as functions of the pj, in the open set A, when the stated
hypotheses are valid and when the consumer regulates his behaviour in
accordance with the basic hypothesis stated above.

In particular it is thus possible to consider certain n functions:

x = f;(plR) (4.6)

that express the quantities of goods purchased by the consumer in the
stated hypothetical conditions and in relation to the price vector p and the
overall expenditure R.

The (4.6) functions are known as "consumer demand functions".

5. THE INDIFFERENCE FACET

Using conventional geometrical language as mentioned in paragraph 1,
the content of the equations formulated at (4.4) of the preceding
paragraph can be expressed by saying that for each
point x of the open set A there is an "indifference facet" for the consumer.
This facet can be represented as follows. Let us assume that the linear
polynomial in the differentials dx; is:

n = T pidx;. (5.1)

This linear polynomial is also known as the "Pfaff form", or as
"Pfaffian”. Using the evocative language of differentials it can be said that
the value of the Pfaffian n represents the (infinitesimal) expenditure made
by the consumer to change his situation, moving within a constant price
context from point x of A to a point whose coordinates have grown in
algebraic terms (that is, with possible negative growth) of the quantities
dx;j .



The equation:

n=3pdx;=0 (5.2)

translates the condition whereby the infinitesimal increment is tangent to
the hypersurface of indifference, and thus takes place with constant utility.

The (5.2) equation is called a Pfaff’s equation. We will be dealing with
it later in this paper, using the methods and approach of a classical theory
that handles individual equations of this type and systems of equations of
the same sort. '

For the moment we would like to make one or two observations that
explain the aim of this paper and the introductory words in paragraph 1.

We should first of all point out that the Pfaff’s equation (5.2) derives
from the stated hypotheses, that is from the existence of a consumer utility
function and from the consumer's behaviour in accordance with the basic
hypothesis. In other words, in these conditions demand functions can be
taken into consideration, and the consumer's hehaviour is globally
coherent. This in its turn means that the consumer can express peference
(or indifference) regarding two sitnations corresponding to two points X
and y of A, even when these are distant from each other. However, the
(5.2) equation expresses consumer’s behaviour that only concerns
situations that are very close and presupposes the existence of demand
functions alone and not of global utility functions. In other words, the
validity of (5.2) can be derived from the classical hypotheses, but this does
not ensure the validity of the classical hypotheses. To achieve this, further
conditions need ro be verified; and these, along with the (5.2} equation,
define the globally coherent behaviour of the consumer. [f this is not so, a
more limited concept of coherence can be defined, as we shall see.

We should also like to point out that, from the point of view of the
application of the concepts that we are currently explaining, it would
appear to be easier and more effective to work out the observation
procedures aimed at verifying equation (5.2) than to construct procedures
for demonstrating the existence of a utility index function in the open set
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6. THE SLUTSKY EQUATIONS

As we have seen, classical Paretian theory provides us with a description
of consumer behaviour with the (4.4) system of equations. What is known
as "Slutsky’s equations” derive from these equations using derivation
procedures. The Slutsky’s equations are as follows:

axk

op; ox; Opy y
P 9R

1

ax, 3R T ax,

+

(6.1)

For their demonstration see manuals dealing with mathematical
economy such as the one by Manara-Nicola (1970).

What interests us here is to cbtain these equations via the Pfaff’s
equations mentioned in paragraph 5. To this end we can calculate the
external differential of the Pfaff’s form n defined by equation (5.1) of
paragraph 5. In fact from (4.6), bearing in mind the equation (4.3) in the
same paragraph, and assuming;:

dp, ox.
po= Py 6.2
W ok, TR GR (6.2)
we obtain:
dn= _%(sik —s,.)dp,_~Adp, . (6.3)

Thus the subsistence of the Slutsky equations implies that the Pfaffian
differential form p is closed, such that:

dr = 0. (6.4)

Vice-versa, the theory of external differential forms ensures that, in the
hypotheses formulated for the open set A, the subsistence of (6.4} is also a
sufficient condition for ensuring that the Pfaffian equation:



dn =0. (6.5)

is completely integrable, in other words for ensuring that there is a sheaf
of surfaces

u{x) = constant (6.6)
such that for each point of A

du=~x. (6.7)

The theory mentioned also shows that the sufficient condition for the
complete integrability of the Pfaffian equation (6.5) can be expressed in a
more general form, imposing the existence of a differential form 0 such
that:

de=n A0 . (6.8)

Thus, within this framework is can be said that the subsistence of the
Slutsky equations is both a necessary and a sufficient condition for
ensuring the global coherence of the consumer’s behaviour within the open

set A.

7. PARTIAL COHERENCE

We have seen that the theory of external differential forms gives an
interesting meaning to the classical Slutsky equations in connection with
the problem of consumer coherence. At this point we can take a closer
look ar the meaning of the more general situation that arises when we
know the consumer's demand functions and we can thus construct the
Pfaffian form p, even without satisfying the Slutsky equarions.

Obviously in this case there is no utility function that can act as a choice
criterion thar the consumer can use to compare two situations and make
coherent decisions. However, here again certain characteristics of the
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consumer's behaviour can be taken into consideration, thereby introducing
a somewhat milder concept of coherence.

To this end let us point out that even when (6.8) does not apply, it is
possible to define the natural number p that satisfies the limitation:

2p<n-1 (7.1)
and there are 2p functions:

Z1,22; wey Zp sV 15 s Vp (7.2)
such that the Pfaff's polynomial © can be expressed in the following form:

p=du+z1dvt +22dv2+...+zpdvp. (7.3)

It thus follows that the Pfaffian equation © = 0 is verified on the n -p-1
dimensional variety defined by the equations:

u =c (constant); vi =¢; (1 i1 < p). (7.4)

This variety can thus be considered as the immediate generalization of
the indifference variety of the classical Paretian theory and could thus be
called limited or partial indifference variety. )

Moreover it should be observed that the (7.4) equations constitute a
systermn of p+1 equations in finite terms thart link the coordinates of a point
x belonging to the open set A. Thus there are p+1 varieties of dimension n-
p. each one of which is represented by p equations selected from the (7.4)
ones. One of these, for example, is defined by the equations:

vi=ci {(1<1<p); (7.5)

Only function u varies on this variety, which means that its values can
be used by the consumer as a criterion for comparing two situations. It is
thus reasonable to talk about weak or partial coherence on the part of the
consumer, who decides to keep on a variety defined by equations (7.5) and
regulates his choices on the value adopted by function u (at points in the
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variety considered, of course). Similar considerations obviously also apply
to each of the other varieties defined by the p equations selected from the
{7.5) ones.

By referring to the language of the theory of contact transformarions, it
can thus be said that if the Pfaff's equation (6.5) is completely integrable,
then the indifference facets can be organized such that they are all tangents
of the hypersurfaces of a (6.6) type sheaf. If on the other hand the Pfaff's
equation is not completely integrable, then the facets can be organized so
that they are tangents to certain varieties smaller in size than (n - 1}.

8. OBSERVATIONS

At this point we should like to make a few brief observations
concerning the significance and eventual effects of the theoretical
developments hitherto described.

Firstly we should point out that we have been referring to the classical
problem of the consumer solely in order to clarify our ideas and avoid the
excessively abstract nature of general treatments that could appear far
removed from any possible application to real economic problems. In
actual fact it would be relatively easy to extend the concepts and
developments outlined here to problems of 2 much more general nature;
indeed, to many other economic questions.

The first example to focus on here derives from the theory of
production and the mathematical schematization of the related problems
using methods pertaining to profit optimization under given constraints.
However we are also convinced that within the same framework it should
be possible to deal with numerous other problems concerning economic
systems if the problems themselves are formulated as a quest for the
extreme conditioned values of certain functions.

In the second place we believe that our framework should help
overcome the distance that appears to separate the various approaches to
particular economic problems. In fact certain mathematical approaches
which seem very elegant to the mathematician are criticized as being
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excessively abstract because they assume the economic agent's behaviour
1o be globally coherent, which it rarely is, or because they presuppose the
possibility of making comparisons between very different situations.
However, we believe that mathematical tools can help schematize and deal
with situations in which the agents only display a sort of limited (or local)
coherence. This in its turn may be seen as a step in the direction of
theoretical tools that actually fit the object of the inquiry better.
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Appendix. A reminder of the external differential forms

1. The theory of external differential forms is not often used in
economic analysis, so we shall now proceed to mention some of its salient
features. As we have already said, with the geometrical language we have
chosen to use we obtain agile and concise expressions without detracting
from the generality. The notation used here has absolutely no relation to
the meanings given to the symbols in the previous paragraphs.

Alongside the n-sized Euclidean space in which a point x has the
following (real) coordinates:

X1y X2 5 ooy X1 s (A.1)

let us consider the vector space of the differentials of the variables.
Let us assume:

dx = [dxl ,dxz y eny dxn ] (A.Z)

On this vector space of the differentials let us then construct the
n(n-1)/2-sized space whose generators are the orderly pairs of elements dx ;
and dx) . We shall use the symbol:

dx; Adxy (A.3)

to indicate an element of the second vector space that we believe derives
from an "alternate product" operation applied to the two differentials dxk
and dxj. This product is indicated by the presence of the symbol "A"
between the two differentials and is held to yield to the syntax expressed
by the following formal rules:

dx; /\d.\'k +dxk Adx, =0 and therefore
dx, Adx; =0
dx;, A[a 'dxk +b Adxi]=a ~dxi Adxk +b-dx, AdX]—

with a and b real numbers

(A.4)



2. Let A be an open set simply connected in the space, and a(x) stand
for a vector whose components are functions of the point x of A:

a(x)=[a1 (x),a2 ()., an (x)]. (A.5)

We shall assume that the functions that make up the vector a have at
least derivatives of first and second order in A, and that the latter are
CONtinuous.

The first degree polynomial in the dx; :

a= Yy a;dx; (A.6)

is also called "linear differential form" or Pfaff's form.
In the hypotheses thus stated, it is also possible to construct the second
degree polynomial (in the dx; variables) expressed by the formula:

da = %dak Adx, (A.7)

where the symbol dak stands for the total differential of the function ay,

that is:

da, =Yy —K .dx, (A.8)

The polynomial do expressed by (A.7) is called the "external
differential” of the Pfaffian form a; bearing in mind the syntactical rules of

the external product, it can be expressed in the following form:

aa aaA
da = Y| - —L dx. Adx,. (A.9)
id((axi axk I k

3. Let us consider the particular case in which the Pfaff's form derived
from (A.6) in the previous paragraph expresses the total differential of a
function u; in other words be:

85



o= — A.10
i 3% ( )

and thus:
o= du. (A11)

In this case we obtain

2 2
do = E du - du X; Adxk (A.12)
R\ 0% 0X; 0x ;0
such that, assuming the function u to yield the aforesaid hypothesis in the
open set A:

A Pfaff's differential form for which (A.13) is valid is called closed; if it
is the total differential of a function u, that is if (A.11} is true, then it is
called exact. The brief calculation performed above shows thart every exact
form is closed.

4. The equation:

o=0 {A.14)

is called a "Pfaff's equarion". The equation (A.14) is said to be
"completely integrable" if there are two function: u(x) and F(x) such that:

Fo= du. (A.15)

The function F is called the "integrating factor of the form «", and each

variety represented by an equation of the type:
u(x) = ¢ (constant) (A.16)

(or represented in an equivalent form) is called the "solution" or
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| tntegral" of the equation (A.14).

[ Obviously if F = 1 then the form o is exact, according to the
i‘ terminology introduced in paragraph 3.

: The necessary and sufficient condition for equation (A.14) to be
! completely integrable thus proves to be the existence of another form

B= Y b, (x )dx, (A.17)
k
such that:
do= A B. (A.18)

If this condition is not met, then there is a natural number that meets
the requirements of the relation:

2p<n -1 (A.19)
and there are 2p functions:
21522« Zpy V1, V25 -0 Vp (A.20)

such that the Pfaff differential form o can be represented as follows:

p
o=du + X‘Zidvi . (A.21)
i=1

In this case the n - p - 1 dimensional varieties represented by the system
of equations:

u = ¢ {constant); vj = ¢ (constants) (A.22)

can be called "solutions" or "integrals” of the equation (A.14).
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